Today we’re going to take a look at a very useful system of representing and working with monomials and polynomials: algebra tiles. They’re very intuitive and easy to use, and we’re currently incorporating them into our platform so that our students have this resource available when working with polynomials in their daily Smartick sessions.

If you’re not sure what a polynomial is, take a look at our previous entry about its properties before you continue.

###### Representing polynomials with algebra tiles

**Algebra tiles** are tiles of different colors and sizes. Each size corresponds to a degree of the different monomials of the polynomial. An example will make it easier to understand:

- This tile represents a
**unit**. It corresponds to monomials with a**degree of 0**.

- This represents
It corresponds to monomials with a*‘x’*.**degree of 1**.

- Finally, this represents
. It corresponds to monomials with a*‘**x*^{2}‘**degree of 2**.

Therefore, if we want to represent the polynomial 2x^{2 }+ 4x + 5 it’s as easy as arranging the corresponding tiles:

We’ve got **2** tiles of **‘x ^{2}‘**,

**4**tiles of

**‘x’**, and

**5**tiles that represent a

**unit**.

Easy, right?

###### Adding polynomials with algebra tiles

Adding polynomials is just as simple as representing them. In this case we’ll use polynomials with all positive monomials. We’ll take the polynomial that we represented before, **2x ^{2 }+ 4x + 5**, as the

**first summand**. The

**second summand**will be

**x**. Let’s represent them both with the algebra tiles:

^{2 }+ 2x + 3Now we add the like tiles to find the result…

The polynomial **result **of the addition is **3x ^{2 }+ 6x + 8**.

It’s an easy and intuitive resource that helps us better understand polynomials and operations with them. You can make them yourself and practice with them anywhere you want!

If you want to know more about polynomials and other mathematical content, log in to Smartick and try it free.

### Learn More:

- Review the Properties of Polynomials
- How to Subtract Polynomials with Help from Algebra Tiles
- Learn How to Add Polynomials with Examples
- Representing Powers with Rods
- Learn the Properties of Monomials

#### Latest posts by Smartick (see all)

- What Is an Angle? How Is It Made? - 10/14/2019
- Frustration and Failure as Instruments of Education - 10/11/2019
- Motivation – Evidence Based Education - 10/07/2019